Допуск под подшипник на вал
Допуск и посадки подшипников
Современные принципы производства и обслуживания техники предполагают взаимозаменяемость отдельных деталей и частей в узлах. Это положение напрямую касается и таких сложных изделий, как подшипники. Для достижения взаимозаменяемости деталей государственными стандартами введена единая система допусков и посадок (ЕСДП), которая обеспечивает возможность использования элементов одного вида вместо других.
ЕСДП представляет собой ряд значений, определенных на основе экспериментальных исследований и практического опыта проектирования и производства изделий. Действие указанной системы распространяется на соединения гладких деталей и узлов цилиндрической и конической формы, к которым относятся и подшипники качения. Стандартизация размеров данных узлов производится по присоединительным поверхностям.
Подшипники сопрягаются с деталями механизма по внутренней и наружной обойме. При этом поля допуска конструктивного узла признаются неизменными. Стандартизация посадок изделий такого рода сводится к определению максимально допустимых отклонений валов и отверстий корпуса от номинальных значений. Величина их определяется в соответствии с ГОСТ 520-89, который устанавливает технические характеристики и класс точности изготовления подшипников.
Для монтажа подшипника на вал и в корпус используют систему посадок приведённую ниже:
Чаще всего применяются:
- посадки на вал: g6, h6, j6, k6, m6, n6, p6, r6, в случае более высоких требований к точности вращения — h5, j5, k5, m5;
- посадки в корпус: G7, H8, H7, J7, K7, M7, N7, P7, а при высоких требованиях к точности вращения: J6, K6, M6, N6, P6.
В случае применения подшипников разных классов точности применяют следующие квалитеты отверстий:
- точность подшипника — 0 и 6-7 квалитет отверстия;
- точность подшипника — 5 и 4-6 квалитет отверстия;
- точность подшипника — 2-5 квалитет отверстия.
Основные требования к конструкционным узлам и сопрягаемым поверхностям:
В процессе производства деталей неизбежны отклонения от номинального размера в ту или иную сторону. В соответствии с требованиями стандарта устанавливается класс точности подшипника. ГОСТ 332-85 вводит систему обозначений для полей допусков в зависимости от размеров наружных и внутренних обойм и максимальных отклонений.
Значения для приведенных выше величин определяются по специальным таблицам, приведенным в ГОСТ. Для установки подшипников в отверстие корпуса или на вал этим же стандартом устанавливаются допустимые посадки, которые зависят от диаметра и класса точности подшипника.
В целях достижения высокого качества конструкционных узлов строго регламентируются допустимые отклонения от идеального пространственного тела вращения цилиндра и конуса. Эллипсоидная форма колец подшипника устраняется при монтаже изделий с натягом, наличие отклонений от идеальной формы вынудило разработчиков ввести понятия среднего и номинального диаметров изделия.
Понятие о квалитете
Детали узла, в которых используются подшипники, корпуса и валы оказывают влияние друг на друга. Важно максимально точно подобрать изделие с учетом класса точности и полей допусков. Для этого были разработаны понятия о квалитете подшипников и других частей рассматриваемой системы.
В особо ответственных сопряжениях, например, между деталями кривошипно-шатунного механизма двигателя внутреннего сгорания используется пятый или шестой квалитет. Более высокие значения этого параметра допускаются для системы вал-подшипник-корпус в коробках передач. В подобных соединениях используется седьмой и восьмой квалитет при подборе деталей по классу точности и чистоте обработки поверхностей.
Единая система допусков и посадок, введенная в нашей стране для таких конструкционных узлов, как подшипники позволяет добиться их максимальной взаимозаменяемости. Это обстоятельство делает возможным проведение ремонтных работ с заменой изношенных изделий и восстановления работоспособности механизма или узла. Допуски и посадки подшипников учитываются в процессе проектирования и опытно-конструкторских работ.
Сотрудники ТД «Росподшипник» готовы оказать посильную помощь клиентам в вопросах подбора необходимых изделий и узлов. Персонал компании обладает достаточной квалификацией в указанной сфере и имеет профильное образование. Обращение к нам гарантирует правильность подбора подшипников и других комплектующих.
www.rospod.ru
4.2.6. Поля допусков для размеров посадочных поверхностей валов и отверстий корпусов под подшипники качения
Для образования посадок с подшипниками качения из общей системы допусков и посадок (ГОСТ 25347-89) отобрана группа полей допусков, т.е. основных отклонений и квалитетов. Полный набор этих отобранных полей допусков приведен в ГОСТ 3325-85, в котором также рассматриваются вопросы использования этих полей допусков. В этом стандарте выделены посадки, которые используются для основных типов соединений, и посадки ограниченного применения. Естественно, что речь идет о полях допусков и отверстий на элементы деталей обрабатываемых потребителем подшипников. Полный набор полей допусков, используемых при образовании посадок с подшипниками качения, приведен на рис. 41.
Для облегчения студентам выполнения работ при курсовом и дипломном проектировании, а также для работы начинающим специалистам, приведены табл. 6 и 7. содержащие основные поля допусков для валов и отверстий, на которые устанавливаются подшипники качения.
Рис. 41. Поля допусков валов и отверстий посадочных поверхностей для установки подшипников качения
Таблица 6
Поля допусков валов для основных видов сопряжений по кольцу подшипника
Класс точности подшипника Поля допусков для посадочной поверхности вала 0 и 6 f6, g6, h6, k6, m6, n6, js6, f7 5 и 4 g5, h5, js5, k5, m5, n5 2 g4, h5, js4, k4, m4, n4 |
Таблица 7
Поля допусков отверстий для основных видов сопряжений
посадочных поверхностей по наружному кольцу подшипника
Класс точности подшипника Поля допусков для посадочной поверхности отверстия 0 и 6 G7, Н7, JS7, К7, М7, N7, Р7 5 и 4 G6, Н6, JS6, Кб, Мб, N6 2 С5, Н5, JS5, К5, М5, N5 |
Как можно видеть из приведенных таблиц, точность присоединительных поверхностей отверстий обычно на один квалитет больше, чем для валов при образовании посадок, т.е. точность отверстия на 60% меньше, чем у вала. Объясняется это тем, что изготавливать и измерять отверстие труднее и дороже, чем вал того же номинального значения, а характер посадки определяется не значениями размера одного из сопрягаемых размеров, а разностью их размеров.
4.2.7. Посадки подшипников качения на валы
и в отверстия корпусов
Как и при образовании посадок в соответствии с единой системой допусков и посадок, посадка подшипников осуществляется в системе отверстия и в системе вала.
Посадки по наружному диаметру подшипника осуществля-ются в системе вала, поскольку с приобретением подшипника одновременно приобретается готовый вал и нет смысла его дополнительно обрабатывать для получения посадок в системе отверстия.
Посадки по внутреннему диаметру подшипника осуществляются в системе отверстия. Поля допусков отверстия подшипника расположены не в плюс, как у обычных основных отверстий, а в минус — для получения большего количества переходных посадок. В этом особенность посадок в системе отверстия по внутреннему кольцу подшипника.
Обозначение посадок подшипников, в принципе, такое же, как в общей системе допусков и посадок, т.е. в виде дроби, когда в числителе указывается поле допуска отверстия, а в знаменателе — поле допуска вала (рис. 42, а). Естественно, что одним из полей допуска является поле допуска кольца подшипника.
Рис. 42. Обозначение на сборочном чертеже посадок подшипников качения
Обозначение может осуществляться несколькими вариантами: обозначение посадки в системе отверстия (по внутреннему кольцу):
Ǿ50 L0/js6; или Ǿ50 L0 — js6; или Ǿ50 ;
обозначение посадки в системе вала подшипника (по наружному кольцу):
Ǿ90 Н7/l0; или Ǿ90Н7 — l0; или Ǿ90
Стандартом допускается, а на производстве этим повсеместно пользуются, не указывать поле допуска кольца подшипника (рис. 42, б). Таким образом, но сборочном чертеже допускается вместо посадки указывать только поле допуска размера, который будет обрабатываться по данному чертежу на данном производстве, и не указывать точность (поле допуска) поверхности подшипника. Такая система обозначения многих вполне устраивает (чем меньше надо указывать, тем меньше надо знать), но существенный недостаток этого обозначения в том, что на чертеже не указывается в явном виде точность используемого подшипника.
studfiles.net
Пример выбора и расчёта посадок подшипника качения
Рассматриваемый узел редуктора (рис. 15) имеет вал, опорами которого являются два шариковых подшипника с диаметром отверстия 30 мм. Учитывая, что требования к точности вращения вала специально не оговорены, а также то, что данный редуктор не относится к высокоскоростным, принимаем нормальный класс точности подшипников (условное обозначение подшипника 306).
Рис. 15. Фрагмент редуктора
Данный подшипник относится к шариковым радиальным однорядным открытым, серия диаметров средняя (3), серия ширин – узкая. Основные размеры подшипника:
· номинальный диаметр отверстия внутреннего кольца под-шипника d = 30 мм;
· номинальный диаметр наружной цилиндрической поверхности наружного кольца D = 72 мм;
· номинальная ширина подшипника B = 19 мм;
· номинальная высота монтажной фаски r = 2 мм.
Определяем виды нагружения колец подшипника (местное, циркуляционное, колебательное). Так как передача крутящего момента осуществляется цилиндрическими зубчатыми колёсами, то в зубчатом зацеплении действует радиальная нагрузка, постоянная по направлению и по значению. Вал вращается, а корпус неподвижен, следовательно, внутреннее кольцо испытывает циркуляционное нагружение, а наружное кольцо – местное. Примем легкий режим работы подшипникового узла. ГОСТ 3325 для такого случая рекомендует поля допусков цапфы вала, сопрягаемой с кольцом подшипника качения, k6 или js6. Выбираем поле k6, которое обеспечивает посадку с натягом (см. рис. 11). Так же на основании рекомендаций стандарта выбираем поле допуска отверстия корпуса Н7. Предельные отклонения средних диаметров колец подшипника качения определяем по ГОСТ 520, предельные отклонения вала Ø30k6 и отверстия корпуса Ø72Н7 – по ГОСТ 25347-82 «Основные нормы взаимозаменяемости. Единая система допусков и посадок. Поля допусков и рекомендуемые посадки» и расчеты сводим в таблицы (табл. 16 и 17).
Таблица 16
Предельные размеры колец подшипников качения
Размер, мм | ES (es),мкм | EI (ei),мкм | Dm max (dm max), мм | Dm min (dm min),мм |
d = 30 | - 10 | 30,000 | 29,990 | |
D = 72 | - 13 | 72,000 | 71,987 |
Таблица 17
Предельные размеры цапфы вала и отверстия корпуса
Размер, мм | ES (es),мкм | EI (ei), мкм | Dmax (dmax), мм | Dmin (dmin),мм |
d = 30 | + 15 | + 2 | 30,015 | 30,002 |
D = 72 | + 30 | 72,030 | 72,000 |
Строим схемы расположения полей допусков сопрягаемых деталей подшипникового узла и рассчитываем зазоры (натяги).
По dm:
Nmax = dmax – dm min = 30,015 – 29,990 = 0,025 мм = 25 мкм;
Nmin = dmin – dm max = 30,002 – 30,000 = 0,002 мм = 2 мкм;
Ncp = (Nmax + Nmin)/2 = (25 + 2)/2 = 13,5 мкм.
Рис. 16. Схема расположения полей допусков сопряжения Ø30L0/k6
По Dm:
Smax = Dmax – Dm min = 72,030 – 71,987 = 0,043 мм = 43 мкм;
Smin = Dmin – Dm max = 72,000 – 72,000 = 0,000 мм;
Scp = (Smax + Smin)/2 = (43 + 0)/2 = 21,5 мкм;
TS = ITDm + ITD = 30 + 13 = 43 мкм.
Производим проверку наличия в подшипнике качения радиального зазора, который уменьшается по причине натяга при посадке подшипника на вал. В расчетах принимаем среднее значение натяга и среднее значение зазора в подшипнике как наиболее вероятные:
Ncp = 13,5 мкм;
Nэф = 0,85·13,5 = 11,5 мкм = 0,0115 мм;
d0 = dm + (Dm – dm)/4 = 30,000 + (72,000 – 30,000)/4 = 40,5 мм;
Δd1 = Nэф·dm / d0 = 0,0115·30/40,5 = 0,0085 мм = 8,5 мкм.
Рис. 17. Схема расположения полей допусков сопряженияØ72Н7/l0
По ГОСТ 24810 определяем предельные значения теоретических зазоров в подшипнике 306 до сборки:
Gr min = 5 мкм;
Gr mах = 20 мкм.
Средний зазор в подшипнике 306 определяется как полусумма предельных теоретических зазоров:
Gr cp = (Gr min + Gr mах)/2 = (5 + 20)/2 = 12,5мкм.
Тогда
Gпос = Gr cp – Δd1 = 12,5 – 8,5 = 4 мкм.
Расчёт показывает, что при назначении посадки Ø30L0/k6 по внутреннему диаметру зазор в подшипнике качения после посадки будет положительным.
На чертежах общего вида выбранные посадки подшипника качения обозначаются:
· на вал – Ø30L0/k6, где L0 – поле допуска внутреннего кольца подшипника нормального класса точности; k6 – поле допуска вала.
· в корпус – Ø72Н7/l0, где Н7 – поле допуска отверстия корпуса; l0 – поле допуска наружного кольца подшипника нормального класса точности.
По ГОСТ 20226-82 «Подшипники качения. Заплечики для установки подшипников качения. Размеры» определяем диаметры заплечиков вала и корпуса.
Для диаметра вала d = 30 мм шариковых подшипников наименьший и наибольший диаметры заплечика соответственно равны = 36 мм и = 39 мм. Выбираем диаметр заплечика = 36 мм как предпочтительный размер из ряда Ra20.
Для внутреннего диаметра корпуса D = 72 мм шариковых подшипников диаметр заплечика равен Da = 65 мм.
Шероховатость посадочных поверхностей, сопрягаемых с кольцами подшипника деталей, зависит от диаметра и класса точности подшипника. Наибольшие значения параметров Rа для посадочных поверхностей валов, отверстий и торцов заплечиков валов и корпусов представлены в табл. 18.
Таблица18
Значения параметров шероховатости Rа
для посадочных поверхностей, сопрягаемых с подшипниками
Посадочные поверхности | Классы точности под-шипников | Номинальные диаметры | |
до 80 мм | 80...500 мм | ||
Rа, мкм | |||
Валов | 1,25 | 2,5 | |
6, 5 | 0,63 | 1,25 | |
0,32 | 0,63 | ||
Отверстий корпусов | 1,25 | 2,5 | |
6, 5, 4 | 0,63 | 1,25 | |
Торцов заплечиков валов и корпусов | 2,5 | 2,5 | |
6, 5, 4 | 1,25 | 2,5 |
По ГОСТ 3325, табл. 3, выбираем требования к шероховатости (можно также использовать табл. 18 данного издания):
· посадочной поверхности вала под кольцо подшипника Rа 1,25;
· посадочной поверхности корпуса под кольцо подшипника Rа 1,25;
· торцовой поверхности заплечика вала Rа 2,5.
Исходя из рекомендаций, приведенных в п. 2.2.7, назначаем более жесткие требования к шероховатости посадочной поверхности вала под кольцо подшипника Rа 0,32, посадочной поверхности корпуса под кольцо подшипника Rа 0,32, торцевой поверхности заплечика вала Rа 1,25.
В ГОСТ 3325 также нормированы требования к форме посадочных поверхностей вала и корпуса, сопрягаемых с кольцами подшипника, и к торцовому биению заплечиков валов и отверстий корпусов.
Из табл. 4 ГОСТ 3325 выбираем значения:
· допуска круглости посадочной поверхности вала под кольцо подшипника 3,5 мкм;
· допуска профиля продольного сечения посадочной поверхности вала под кольцо подшипника 3,5 мкм;
· допуска круглости посадочной поверхности корпуса под кольцо подшипника 7,5 мкм;
· допуска профиля продольного сечения посадочной поверхности корпуса под кольцо подшипника 7,5 мкм.
Следует отметить, что ограничения, наложенные стандартом на форму поверхностей, сопрягаемых с подшипниками, могут не совпадать со стандартными допусками формы по ГОСТ 24643-81 «Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения». Однако можно согласовать эти требования за счет ужесточения «расчетных» допусков до ближайших стандартных значений, установленных в общетехнических стандартах. Исходя из этого назначаем допуск круглости посадочной поверхности вала под кольцо подшипника равным 3 мкм и допуск профиля продольного сечения посадочной поверхности вала под кольцо подшипника равным 3 мкм, допуск кругло-сти посадочной поверхности корпуса под кольцо подшип-ника равным 6 мкм и допуск профиля продольного сечения посадочной поверхности корпуса под кольцо подшипника равным 6 мкм.
Стандарт нормирует также торцовое биение заплечиков валов и отверстий корпусов. Из табл. 5 ГОСТ 3325 выбираем значения:
· допуска торцового биения заплечика вала 21 мкм;
· допуска торцового биения заплечика корпуса 30 мкм.
Допуск торцового биения заплечика вала можно округлить до значения 20 мкм.
Суммарное допустимое отклонение от соосности, вызванное неблагоприятным сочетанием всех видов погрешностей обработки, сборки и деформации подшипников посадочных поверхностей вала и корпуса под действием нагрузок, оценивается допустимым углом взаимного перекоса θmax между осями внутреннего и наружного колец подшипников качения, смонтированных в подшипниковых узлах. В прил. 7 ГОСТ 3325 приведены числовые значения допусков соосности посадочных поверхностей для валов и для корпусов в подшипниковых узлах различных типов при длине посадочного места В1 = 10 мм (в диаметральном выражении). При другой длине посадоч-ного места B2 для получения соответствующих допусков соосности табличные значения следует умножить на B2/10. Под-шипник 306 имеет ширину B2 = 19 мм и относится к группе радиальных однорядных шариковых. Примем нормальный ряд зазоров. Тогда допуск соосности поверхностей вала составит Тсоосн = 4·В2/10 = 4·19/10 = 7,6 мкм; ужесточаем рассчитанный допуск по ГОСТ 24643 и принимаем Тсоосн = 6 мкм. Соответственно для поверхностей корпуса Тсоосн = 8·B2/10 = = 15,2 мкм; ужесточаем до значения Тсоосн = 12 мкм.
Допуски соосности можно заменить допусками радиального биения тех же поверхностей относительно их общей оси с учетом того, что на те же поверхности обязательно задаются допуски цилиндричности, которые вместе с допусками радиального биения ограничивают такие же отклонения, какие ограничивают допуски соосности.
![]() | Рис. 18. Пример обозначения точностных требований к поверхностям вала, сопрягаемым с подшипником качения |
Рис. 19. Пример обозначения точностных требований
к поверхностям отверстий корпуса, сопрягаемым с подшипником качения
megaobuchalka.ru
Метрология
Подшипники качения работают в самых разнообразных эксплуатационных условиях и призваны обеспечивать требуемую точность и равномерность вращения подвижных частей машин, а также обладать высокой долговечностью. Работоспособность подшипников качения в большой степени зависит от точности их изготовления и характера соединения с сопрягаемыми деталями. Являясь стандартными узлами, подшипники качения имеют полную взаимозаменяемость по присоединительным поверхностям, определяемым наружным диаметром наружного и внутренним диаметром внутреннего колец.
Точность подшипников качения (ГОСТ 520-71, СТ СЭВ 774-77) определяется следующими показателями:
- точностью присоединительных поверхностей, т. е. точностью формы и размеров отверстия диаметром d во внутреннем кольце, цилиндрической поверхности диаметром D наружного кольца и ширины колец В;
- точностью размеров и формы тел качения, а также дорожек качения наружного kн и внутреннего kв колец;
- радиальным биением дорожек качения внутреннего Ri и наружного Rа колец;
- непостоянство ширины колец Uр;
- биением базового торца внутреннего кольца относительно его отверстия Si и наружной поверхности наружного кольца относительно базового торца Sa;
- осевым биением дорожки качения внутреннего Ai и наружного Aa колец относительно базовых торцов;
- шероховатостью посадочных и торцовых поверхностей колец.
В зависимости от перечисленных показателей точности все тип подшипников качения делят на пять классов точности, обозначаемых в порядке повышения точности: 0, 6, 5, 4 и 2. Класс точности подшипника выбирается исходя из требований, предъявляемых к точности вращения и условиям работы механизма, с учетом того, что с повышением класса точности значительно возрастает стоимость подшипника. Дорогостоящие подшипники высокой точности следует применять только в обоснованных случаях.
В машино- и приборостроении при средних и малых нагрузках, нормальной точности вращения (например, в редукторах общего назначения) обычно применяют подшипники класса точности 0. Для тех же условий, но при повышенных требованиях к точности вращения используют подшипники класса точности 6. Подшипники классов точности 5 и 4 применяют только при больших скоростях и жестких требованиях к точности вращения, а класса точности 2 – лишь в особых условиях. Класс точности (кроме класса 0) указывают через тире перед условным обозначением подшипника, например: 6 – 310.
ГОСТ 520-71 и СТ СЭВ 774-77 устанавливают также порядок маркировки, упаковки, транспортирования и хранения подшипников, обозначения и определения основных параметров. Кроме того в стандарте приведены методы контроля колец и подшипников в сборе.
Определение годности колец подшипников имеет особенность. Кольца подшипников, находящиеся до монтажа в свободном состоянии, вследствие упругих деформаций могут иметь овальность. Однако кольца могут оказаться годными даже в том случае, когда у данного подшипника наибольший и наименьший диаметры посадочных отверстий выходят за допустимые пределы. Это объясняется тем, что кольца многих подшипников имеют малую толщину, сравнительно легко деформируются и после сборки с валом или корпусом принимают форму круглых цилиндров, имеющих средние диаметры в допустимых пределах. В связи с этим в таблицах стандартов установлены предельные отклонения на номинальные и средние диаметры. Годными являются кольца, действительные значения средних диаметров которых не выходят за предельные значения средних диаметров.
***
Система допусков и посадок, принятая для подшипников качения, обеспечивает взаимозаменяемость подшипников качения по их присоединительным размерам D и d, а также необходимое разнообразие посадок. Эта система, основанная на системе допусков и посадок для гладких цилиндрических соединений, имеет ряд особенностей:
1. Для сокращения номенклатуры подшипников качения значения предельных отклонений, установленных на размеры D и d, зависят только от характера сопряжения подшипников с корпусами и валами.
2. Требуемый характер соединения колец подшипников с деталями механизмов достигается обработкой сопрягаемых поверхностей валов и отверстий в корпусах по предельным отклонениям, при этом для соединения подшипников качения с деталями по наружному кольцу выполняются в системе вала, а по внутреннему – в системе отверстия.
3. Поля допусков наружного и внутреннего диаметров подшипников качения расположены ниже нулевой линии. Таким образом, поле допуска наружного диаметра подшипника занимает такое же положение, как поле допуска основного вала, а поле допуска внутреннего диаметра по сравнению с полем допуска основного отверстия перевернуто относительно нулевой линии.
4. Поля допусков, по которым обрабатываются посадочные поверхности валов и отверстий в корпусах в сочетаниями с полями допусков, установленными на диаметры подшипников, образуют специальные посадки, поскольку в сопряжениях колец с деталями механизмов получают более точные посадки, чем в сопряжениях деталей, обработанных по одинаковым квалитетам Единой системы допусков и посадок (ЕСДП СЭВ).
При выборе полей допусков учитывают тип машины, требования к точности вращения, характер нагрузок (постоянные, переменные, ударные) и другие эксплуатационные условия, а также тип, размеры и условия монтажа подшипников.
На характер соединения подшипников качения с деталями механизмов большое влияние оказывает вид нагружения колец подшипников. Вид нагружения зависит от того, какое кольцо вращается относительно результирующей радиальной нагрузки, действующей на подшипник. Различают три вида нагружения колец: местное, циркуляционное и колебательное.
При местном нагружении кольцо воспринимает радиальную нагрузку, постоянную по направлению, лишь ограниченным участком дорожки качения и передает ее соответственному ограниченному участку посадочной поверхности вала или корпуса.
При циркуляционном нагружении кольцо воспринимает радиальную нагрузку последовательно всей окружностью дорожки качения и передает ее всей посадочной поверхности вала или корпуса.
Колебательное нагружение имеет место, когда подшипник качения нагружен одновременно двумя или несколькими радиальными силами, при этом силы могут быть переменными и постоянными по величине и направлению. В этом случае кольцо подшипника воспринимает равнодействующую нескольких радиальных нагрузок, одновременно воздействующих на ограниченный участок окружности дорожки качения, и передает ее соответствующему ограниченному участку посадочной поверхности корпуса или вала.
При отсутствии особых условий для колец, испытывающих местное нагружение, применяют посадки с зазором или небольшим натягом, а при циркуляционном или колебательном нагружении – неподвижные посадки с натягом или переходные. Это объясняется тем, что при неподвижном закреплении кольца, испытывающего местное нагружение, максимальные напряжения всегда возникают в одной и той же точке его дорожек качения, что приводит к быстрому разрушению подшипника.
Сопряжение с зазором или малым натягом допускает медленное относительное проворачивание сопрягаемых поверхностей и предотвращает локальные перегрузки подшипника. Для колец, нагруженных циркуляционными нагрузками необходимо обеспечить неподвижное соединение, поскольку в этом случае относительное перемещение сопрягаемых поверхностей приведет к быстрому разрушению мягких деталей механизмов более твердыми поверхностями колец подшипника. Кроме того, плотная посадка в этом случае повышает точность вращения деталей механизма.
Между телами качения и дорожками качения в работающем подшипнике необходим радиальный рабочий зазор, который влияет на долговечность подшипника, и зависит от действующих нагрузок, рабочей температуры, начального и посадочного зазоров. Начальным зазором называют зазор, имеющийся в новом подшипнике. Посадочный зазор образуется в результате деформации колец подшипника после монтажа и влияет на рабочий зазор. Отсутствие радиального зазора может привести к заклиниванию подшипника и его разрушению, а слишком большой зазор приводит к тому, что тела качения подшипника будут нагружены неравномерно.
На величину этих зазоров влияет характер посадки колец подшипника, поэтому при выборе допусков следует учитывать условия, в которых будет работать подшипник и механизм в целом.
Обозначения посадок подшипников качения на чертежах
На сборочных чертежах и чертежах деталей рядом с номинальным размером указывают условное обозначение поля допуска только поверхности, сопряженной с подшипником, например: Ø42J87.
***
Порядок расчета допусков и выбора посадок подшипников качения
Расчет и подбор допусков и посадок для подшипников качения следует производить по исходным данным в следующей последовательности: 1. Определяются основные размеры подшипника и характер нагружения его колец. 2. В соответствии с рекомендациями рассчитывается и выбирается посадка циркуляционно нагруженного кольца, а также посадка кольца, испытывающего местное нагружение. 3. Определяются численные значения предельных отклонений присоединительных диаметров подшипника и посадочных мест вала и корпуса согласно выбранным посадкам. 4. Рассчитываются предельные значения присоединительных диаметров и получаемых в соединениях зазоров и натягов. 5. Выполняются схемы взаимного расположения ролей допусков для соединений «внутреннее кольцо - вал», «наружное кольцо - корпус». 6. Устанавливаются отклонения формы, взаимного расположения, шероховатость поверхностей посадочных мест вала и корпуса.
7. Выполняются чертежи или эскизные изображения подшипникового узла и сопрягаемых с подшипником деталей с нанесением всех необходимых обозначений и размеров.
***
Методика расчета посадок для подшипников
Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты
k-a-t.ru